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LECTURE 13

• The dimension of a vector space

• Matrices

• The rank of a matrix

• Row operations



Theorem. (Last lecture)

Let 𝑉 be a vector space over a field 𝕂. A set 𝑆 =
𝑣1, 𝑣2, … , 𝑣𝑛 ⊆ V is linearly independent iff no vector from 𝑆 is 

a linear combination of the remaining 𝑛 − 1 vectors. 

In other words:

Remark.
S = {𝑣1, 𝑣2, … , 𝑣𝑛} is linearly independent iff

(∀𝑖 = 1,2,… , 𝑛)(𝑣𝑖 ∉ 𝑠𝑝𝑎𝑛(𝑆 ∖ 𝑣𝑖 ).

Examples.

1. In every 𝕂𝑛 the set of unit vectors, 
1,0,… , 0 , 0,1,0,… , 0 , … , 0,0,… , 0,1 is linearly 

independent.
𝑎1 1,0,… , 0 + 𝑎2 0,1,0,… , 0 + …+ 𝑎𝑛 0,0,… , 0,1 =
𝑎1, 𝑎2, … , 𝑎𝑛 = (0,0,… , 0) only if 𝑎1 = 𝑎2 = ⋯𝑎𝑛 = 0.



3. Is the set {1, 𝑥, 𝑥2, … , 𝑥𝑛} a linearly independent subset of 
ℝ[𝑥]?
(induction on 𝑛)
{1} and {1, 𝑥} are linearly independent. Suppose {1, 𝑥, 𝑥2, … ,
𝑥𝑛} is linearly independent and {1, 𝑥, 𝑥2, … , 𝑥𝑛+1} is not. This 
implies that 𝑥𝑛+1 = σ𝑠=0

𝑛 𝑎𝑠𝑥
𝑠

Differentiating both sides 𝑛 + 1 times yields 𝑛 + 1 ! = 0, a 
contradiction.



Definition.

If a set 𝑆, 𝑆 ⊆ V, is linearly independent and 𝑠𝑝𝑎𝑛 𝑆 = 𝑉 then 𝑆
is called a basis of V.

Remark.

We defined linear independence only for finite sets of vectors. It 
can be extended to infinite sets but in this course we will only 
consider vector spaces which have finite bases. Such spaces are 
said to be "finite-dimensional".



Examples.

1. In every 𝕂𝑛 the set of unit vectors, 𝑆 = {
}

1,0,… , 0 ,
0,1,0,… , 0 ,… , 0,0,… , 0,1 is a basis.

We know it is linearly independent. Obviously, for every 
vector 𝑣 = (𝑥1, 𝑥2, … , 𝑥𝑛) we can write
𝑣 = 𝑥1 1,0,… , 0 + 𝑥2 0,1,0,… , 0 , + …+ 𝑥𝑛 0,0,… , 0,1 so 

𝑠𝑝𝑎𝑛 𝑆 = 𝑉.

2. {1, 𝑥, 𝑥2, … , 𝑥𝑛} is a basis for ℝ𝑛[𝑥].

3. ℝ[𝑥] has no finite basis.

4. 1, 𝑖 is a basis for ℂ over ℝ.

5. 1 , 𝑖 , {1 + 𝑖} are bases for ℂ over ℂ.



Theorem

A set 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a basis of a vector space 𝑉 over 𝕂 iff 
for every 𝑣 ∈ V there exist unique coefficients 𝑎1, 𝑎2, … , 𝑎𝑛 such 
that 𝑣 = 𝑎1𝑣1 + 𝑎2𝑣2 + …+ 𝑎𝑛𝑣𝑛 = σ𝑠=1

𝑛 𝑎𝑠𝑣𝑠
Proof. (Left as an exercise)

Theorem.

If 𝑆 and 𝑅 are bases of a (finite dimensional) vector space 𝑣 then 
𝑆 = |𝑅|.

We skip the proof.

Definition.

If 𝑉 is a (finite dimensional) vector space then the dimension of 𝑉
is the number of vectors in any basis of 𝑉.

Examples …



Theorem. (6-pack theorem, properties of bases)

Suppose 𝑉 is a vector space, dim(𝑉) = 𝑛, 𝑛 > 0 and 𝑆 ⊆ 𝑉. 
Then 

1. If |𝑆| = 𝑛 and 𝑆 is linearly independent, then 𝑆 is a basis for 𝑉
2. If |𝑆| = 𝑛 and 𝑠𝑝𝑎𝑛(𝑆) = 𝑉 then S is a basis for V

3. If 𝑆 is linearly independent, then 𝑆 is a subset of a basis of 𝑉
4. If 𝑠𝑝𝑎𝑛(𝑆) = 𝑉 then 𝑆 contains a basis of 𝑉
5. 𝑆 is a basis of 𝑉 iff 𝑆 is a maximal linearly independent subset                                 

of 𝑉
6. 𝑆 is a basis of 𝑉 iff 𝑆 is a minimal spanning set for 𝑉.



MATRICES

Definition.

An 𝑚𝑛 matrix over a field 𝔽 is a 𝑚𝑛 (“𝑚 by 𝑛”) array of 
elements of the field (usually numbers). The horizontal lines of 
the array are referred to as rows and the vertical ones as columns 
of the matrix. The individual elements are called entries of the 
matrix. 

Thus, an 𝑚𝑛 matrix has 𝑚 rows, 𝑛 columns and 𝑚𝑛 entries. 

If 𝑚 = 𝑛 we call 𝐴 a square matrix.

The set of all 𝑚 × 𝑛 matrices over a field 𝔽 is denoted by 𝔽𝑚×𝑛.



Matrices will be denoted by capital letters and their entries by the 
corresponding lower-case letters. Thus, in case of a matrix 𝐴 we 
will write 𝐴(𝑖, 𝑗) = 𝑎𝑖,𝑗 and will refer to 𝑎𝑖,𝑗 as the element of the 

𝑖-th row and 𝑗-th column of 𝐴. 

On the other hand, we will use the symbol [𝑎𝑖,𝑗] to denote the 

matrix A with entries 𝑎𝑖,𝑗. 
Rows and columns of a matrix are vectors from 𝔽𝑛 and 𝔽𝑚, 
respectively, and will be denoted by 𝑟1, 𝑟2, … , 𝑟𝑚 and 𝑐1, 𝑐2, … , 𝑐𝑛. 
The expression 𝑚𝑛 is called the size of the matrix.

𝐴 =

𝑎1,1 𝑎1,2 … 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ … ⋮

𝑎𝑚,1 𝑎𝑚,2 … 𝑎𝑚,𝑛



Algebra of matrices

Definition.

Matrix addition is only defined for matrices of matching sizes, 

𝐴 + 𝐵 𝑖, 𝑗 = 𝐴 𝑖, 𝑗 + 𝐵 𝑖, 𝑗 for every 𝑖, 𝑗, 1 𝑖 𝑚, 1 𝑗 𝑛.

(𝑐𝐴)(𝑖, 𝑗) = 𝑐𝐴(𝑖, 𝑗), 1 𝑖 𝑚, 1 𝑗 𝑛 (multiplication of a 
function by a constant)



Matrix multiplication. 

Definition.

Let 𝐴 be an 𝑚𝑛 and 𝐵 an nq matrix. Then

(𝐴𝐵)(𝑖, 𝑗) = σ𝑠=1
𝑛 𝐴(i,s)𝐵(s,j), for every 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ j ≤ 𝑞.

• If the number of columns of A differs from the number of rows 
of B, 𝐴𝐵 is not defined.

• 𝐴𝐵 is clearly an mq matrix.

Matrix multiplication is non-commutative, it may even happen that 
𝐴𝐵 exists while 𝐵𝐴 does not. 



Example (Matrix multiplication).

1. Let 𝐴 =
1 −1 2
2 0 −3

, 𝐵 =
2 0 2
−1 3 1
1 −2 2

. Then, 

𝐴𝐵 =
2 + 1 + 2 0 − 3 − 4 2 − 1 + 4
4 + 0 − 3 0 + 0 + 6 4 + 0 − 6

=
5 −7 5
1 6 −2

.

2. Let 𝐴 =
1 0
1 0

, 𝐵 =
0 0
1 1

. Then 

𝐴𝐵 =
0 0
0 0

and 𝐵𝐴 =
0 0
2 0

. 

The second example proves that 𝐴𝐵 may differ from 𝐵𝐴 even 
when both products exist and have the same size.



Example. (Multiplication trick).

𝐴
1 2 −2
2 1 3

2 −1
2 2
0 3

𝐵

𝐵
2 −1
2 2
0 3

1 2 −2
2 1 3

𝐴

𝐴
1 2 −2
2 1 3

𝑋
𝑥
𝑦
𝑧

2 4
0



Arithmetic properties of matrices

Theorem.

1. (𝔽𝑚×𝑛, +) is a vector space over 𝔽.

2. Matrix multiplication is associative but, in general, not 
commutative.

3. The 𝑛𝑛 matrix 𝐼 defined as 𝐼(𝑠, 𝑡) = ቊ
1 𝑖𝑓 𝑠 = 𝑡
0 𝑖𝑓 𝑠 ≠ 𝑡

is the 

identity element for matrix multiplication in 𝔽𝑛×𝑛:
𝑎 𝑏 𝑐
𝑝 𝑞 𝑟
𝑥 𝑦 𝑧

1 0 0
0 1 0
0 0 1

1𝑎 + 0𝑝 + 0𝑥 … …
0𝑎 + 1𝑝 + 0𝑥 … …
0𝑎 + 0𝑝 + 1𝑥 … …



4. Matrix multiplication is distributive over matrix addition:

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶

Definition.

If 𝐴 is an mn matrix then 𝐴 transposed is the nm matrix 𝐴T 

such that for each i and j (1 i n,1 j m) 𝐴𝑇(𝑖, 𝑗) = 𝐴(𝑗, 𝑖).

Example. 

2 −1
2 2
0 3

𝑇

=
2 2 0
−1 2 3

Definition.

If 𝐴 = 𝐴𝑇 then 𝐴 is said to be symmetric.



Fact. (obvious)

For every matrix 𝐴, 𝐴𝑇 𝑇 = 𝐴
For every two matrices of matching sizes, 𝐴 + 𝐵 𝑇 = 𝐴𝑇 + 𝐵𝑇.
For every two 𝐴 and 𝐵 such that 𝐴𝐵 exists, 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇.

Proof (of the last statement).



𝑠=1

𝑛

𝐴 𝑖, 𝑠 𝐵 𝑠, 𝑗 =

𝑠=1

𝑛

𝐴𝑇 𝑠, 𝑖 𝐵𝑇 𝑗, 𝑠 =

𝑠=1

𝑛

𝐵𝑇 𝑗, 𝑠 𝐴𝑇 𝑠, 𝑖 =

𝐵𝑇𝐴𝑇(𝑗, 𝑖). QED



Definition.

Let 𝐴 be an 𝑛𝑘 matrix. We say that 𝐴 is a row echelon matrix iff 
for every 𝑖 = 2,3,… , 𝑛
(a) if 𝑟𝑖 is a nonzero row of 𝐴 then 𝑟𝑖−1 is also a nonzero row, 

(b) if 𝑎𝑖,𝑗 is the first nonzero entry in 𝑟𝑖 and 𝑎𝑖−1,𝑝 is the first

nonzero entry in 𝑟𝑖−1 then 𝑝 < 𝑗

If, in addition, 
(c) the first nonzero entry in each nonzero row is equal to 1
(d) the first nonzero entry in each nonzero row is the only nonzero 
entry in its column
then A is called a row canonical matrix.



Example.

𝐴 =

0 2 1 1
1 1 3 0
2 1 0 0
1 3 4 1

𝐵 =

1 2 1 1
0 1 2 0
0 0 0 0
0 0 0 2

𝐶 =

1 2 1 1
0 1 2 0
0 0 0 3
0 0 0 0

𝐷 =

1 7 0 3
0 0 1 2
0 0 0 0
0 0 0 0



Definition.

The following transformations of a matrix are called elementary row 
operations (EROS):

1. 𝑟𝑖 ↔ 𝑟𝑗 - replacing row 𝑟𝑖 with 𝑟𝑗 and vice versa (row swapping)

2. 𝑟𝑖 ← 𝑐𝑟𝑖 - replacing row 𝑟𝑖 with 𝑟𝑖 scaled by a nonzero constant c. In 
practice, we abbreviate the symbol to 𝑐𝑟𝑖

3. 𝑟𝑖 ← 𝑟𝑖 + 𝑟𝑗 - replacing row 𝑟𝑖 with the sum of 𝑟𝑖 and 𝑟𝑗 (adding of 𝑟𝑗
to 𝑟𝑖). Usually, we write simply 𝑟𝑖 + 𝑟𝑗.

4. 𝑟𝑖 ← 𝑟𝑖 + 𝑐𝑟𝑗 - replacing row 𝑟𝑖 with the sum of 𝑟𝑖 and the multiple of 

𝑟𝑗 by a constant c. We just write 𝑟𝑖 + 𝑐𝑟𝑗 for short.

Notice that 4 is a composition of 2 and 3. Namely, we do 𝑐𝑟𝑗, then 𝑟𝑖 + 𝑟𝑗
(here 𝑟𝑖 denotes the “new” row j, after scaling) and finally 𝑐−1𝑟𝑗 to convert 

row j to its original form.



Definition.

Matrices 𝐴 and 𝐵 are said to be row-equivalent iff 𝐴 can be 
transformed into 𝐵 by a (finite) number of elementary row 
operations. We denote row-equivalence by 𝐴~𝐵.

Proposition.

The relation of row-equivalence is an equivalence relation on 
𝔽𝑛×𝑚.

Theorem.

Every matrix is row equivalent to a row-canonical matrix. 
(Every matrix can be row-reduced to a row canonical one)

(Every equivalence class of ~ contains a row-canonical matrix)



Example.

𝐴 =

0 2 1 1
1 1 1 0
2 1 0 0
2 6 4 2

𝑟1 ↔ 𝑟4

2 6 4 2
1 1 1 0
2 1 0 0
0 2 1 1

𝑟1

2

1 3 2 1
1 1 1 0
2 1 0 0
0 2 1 1

𝑟2 − 𝑟1, 𝑟3 − 2𝑟1

1 3 2 1
0 −2 −1 −1
0 −5 −4 −2
0 2 1 1

2𝑟2 − 𝑟3

1 3 2 1
0 1 2 0
0 −5 −4 −2
0 2 1 1

𝑟3 + 5𝑟2, 𝑟4 − 2𝑟2

1 3 2 1
0 1 2 0
0 0 6 −2
0 0 −3 1

𝑟4 +
1

2
𝑟3,

1

6
𝑟3

1 3 2 1
0 1 2 0

0 0 1 −
1

3

0 0 0 0

𝑟1 − 3𝑟2, 𝑟2 − 2𝑟3

1 0 −4 1

0 1 0
2

3

0 0 1 −
1

3

0 0 0 0

𝑟1 + 4𝑟3

1 0 0 −
1

3

0 1 0
2

3

0 0 1 −
1

3

0 0 0 0



Definition.

The row rank of an 𝑛 ×𝑚 matrix 𝐴, 𝑟(𝐴), is the dimension of 
the subspace of 𝔽𝑚 spanned by rows of A.

Theorem.

For every two matrices 𝐴 and 𝐵, if 𝐴~𝐵 then 𝑟(𝐴) = 𝑟(𝐵).

Proof. (skipped) 

Note. Since the rank of any row echelon matrix is clearly the 
number of its nonzero rows, the theorem provides a method for 
calculating the rank of the matrix - row reduce the matrix to a 
row echelon one and count its nonzero rows.

Theorem.

For every matrix 𝐴, 𝑟 𝐴 = 𝑟(𝐴𝑇).

We skip the proof .


